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1.  INTRODUCTION 

The pathogenic fungus Batrachochytrium dendro-
batidis (Bd) is associated with a panzootic disease 
and drastic global amphibian declines (Fisher et al. 
2009, Scheele et al. 2019). In addition to the wide 

diversity of amphibian hosts that can be infected by 
Bd (Sauer et al. 2020), Bd also has non-amphibian 
reservoir hosts, such as crayfish (McMahon et al. 
2013a, Brannelly et al. 2015, Oficialdegui et al. 2019). 
Not only does the presence of reservoir hosts (com-
petent hosts that can maintain and transmit a patho-
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gen population) increase the likelihood of popula-
tion-level harm to more susceptible hosts, such as 
amphibians (de Castro & Bolker 2005), but it 
decreases the likelihood of pathogen eradication. 

Bd is globally distributed and unlikely to ever be 
eradicated, which means conservation strategies are 
needed that promote amphibian host resistance or 
tolerance to infection to facilitate amphibian coexis-
tence with this pathogen (Venesky et al. 2014). For 
example, interventions that boost resistance to infec-
tion, such as prophylactic treatments or vaccines, 
could increase the persistence of amphibian popula-
tions even when pathogen eradication is infeasible 
(Barnett & Civitello 2020). There is evidence that 
amphibians can acquire resistance to Bd both natu-
rally and in the laboratory (Shaw et al. 2010, McMa-
hon et al. 2014, Nordheim et al. 2022). For example, 
field-collected Archey’s frogs Leiopelma archeyi 
with self-cured Bd infections had reduced Bd loads 
upon a secondary infection (Shaw et al. 2010). Addi-
tionally, both tadpole and adult Cuban treefrogs 
Osteopilus septentrionalis exposed in the laboratory 
to treatments containing the soluble chemicals pro-
duced by Bd zoospores (Bd metabolites) had dramat-
ically lower Bd loads when subsequently infected 
with live Bd (McMahon et al. 2014, Nordheim et al. 
2022). 

While exposure to Bd metabolites has been shown 
to be protective for both tadpole and adult Cuban 
treefrogs (McMahon et al. 2014, Nordheim et al. 
2022), it remains unknown whether metabolite expo-
sure can protect metamorphic frogs. During meta-
morphosis, amphibians completely rebuild important 
body systems, e.g. the gastrointestinal tract (Schrei -
ber et al. 2005). Although some immunological 
 memory persists through metamorphosis (Barlow & 
Cohen 1983), the developing larvae suppress their 
immune system possibly to prevent the immune sys-
tem from attacking and destroying their own devel-
oping tissue during development (Rollins-Smith et al. 
1997). The metamorphic life stage of a frog is typi-
cally the most susceptible to Bd and has the highest 
odds of infection-induced mortality (Sauer et al. 
2020). Protecting this particularly vulnerable yet 
abundant life stage could improve population per-
sistence. 

In addition to providing protection from Bd across 
amphibian life stages, induced acquired resistance 
must be feasible in several amphibian species for a 
prophylaxis or vaccine to be broadly effective. Host 
community composition strongly impacts disease 
dynamics (Johnson et al. 2013), because host species 
naturally vary in their disease susceptibility, resist-

ance, and tolerance. Species that are pathogen toler-
ant, widespread, and highly abundant may have a 
disproportionately high impact on disease dynamics 
in a community (e.g. see Johnson et al. 2013). Pacific 
chorus frogs Pseudacris regilla, for example, have 
been identified as an important and widespread re -
servoir host for Bd that facilitate Bd persistence on 
the landscape and contribute to spillover onto co-
occurring amphibian species, including some that 
are threatened (Reeder et al. 2012, Wilber et al. 
2020). Therefore, inducing resistance in such an in -
fluential species could provide broader indirect ben-
efits to the entire amphibian community. 

Here, we investigated whether we can use a pro-
phylaxis to protect the highly susceptible metamor-
phic life stage of amphibians against Bd, whether 
this prophylaxis can effectively protect an abundant 
and influential reservoir host of Bd (Pacific chorus 
frogs), and whether exposure to Bd metabolites are 
necessary for protection against Bd. Addressing 
these questions will help to broaden our knowledge 
about prophylactic treatments for Bd and refine 
a potentially important conservation management 
 protocol. 

2.  MATERIALS AND METHODS 

2.1.  Bd culture 

The Bd stock JEL 419 (isolated in Panama during a 
Bd outbreak; Brem & Lips 2008) was cultured on 1% 
tryptone agar plates for 10 d at 18°C (Bd+ plates). 
Artificial spring water (ASW; Cohen et al. 1980) was 
used to flood the Bd+ plates for 5 min. The Bd and 
ASW from all plates was homogenized into one Bd+ 
stock, which was diluted with ASW to 1.2 × 105 zoo-
spores ml−1, a Bd concentration chosen based on pre-
vious work (see Nordheim et al. 2022). We repeated 
this process twice: once to create the prophylactic 
treatments and again to create the Bd+ stock for the 
live Bd exposures. 

2.2.  Prophylactic treatments preparation 

The Killed Zoospores with Metabolites (KZM) 
treatment was used to determine if Pacific chorus 
frogs could gain protection from the previously 
effective prophylaxis, and the Killed Zoospores 
Alone (KZA) treatment was used to determine if the 
zoospores alone could yield protection. We did not 
have a metabolites alone treatment because Nord-
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heim et al. (2022) found that metabolites alone was 
an effective prophylaxis. The Bd+ stock was flash 
frozen with liquid nitrogen to kill the zoospores, 
which was used as the KZM treatment. A portion of 
this killed Bd+ stock was then passed through a 
1.2 μm filter (GE Whatman) to remove the zoo-
spores. The filter with the killed zoospores was then 
washed with the same amount of ASW that was re -
moved from the killed Bd+ stock in order to recon-
centrate the killed Bd zoospores. This KZA treat-
ment contained killed Bd zoospores in ASW and 
had no Bd metabolites. We verified the killed zoo-
spore concentration using a hemocytometer. Addi-
tionally, we verified that the Bd was dead for both 
the KZM and the KZA treatments in 2 ways. First, 
we screened for live and dead zoospores using try-
pan blue staining and microscopy (McMahon & 
Rohr 2014); there were no live zoospores present. 
Then we plated 1 ml on a 1% tryptone plate (n = 3 
plates treatment−1) and tracked Bd growth for 8 d; 
there was no Bd growth. 

The ASW Control treatment (ASWC) was created 
using the same techniques as the Bd+ plates, but no 
Bd was added. We flooded Bd-free 1% tryptone agar 
plates for 5 min, and the ASW from these plates was 
homogenized to create one Bd negative (Bd−) stock. 

All treatments were divided into separate vials, 
containing the amount needed for one day’s adminis-
tration. They were stored frozen until the day they 
were used, which reduced the number of times the 
treatments went through the freeze/thaw cycle. On 
the day of application, they were brought to experi-
mental room temperature prior to administration. 

2.3.  Animal husbandry 

Pacific chorus frog Pseudacris regilla eggs were 
field collected (San Francisco Bay area, CA) and 
shipped overnight to University of Tampa, Tampa, 
FL. They were housed together in ASW (12:12 h 
light:dark cycle at 20°C) until they hatched, and then 
they were housed individually in 400 ml of ASW (0.5 l 
plastic deli cups) and fed fish food and organic 
spinach ad libitum (12:12 h light:dark at 20°C). As 
tadpoles metamorphosed into metamorphic frogs 
(Gosner stage 46; Gosner 1960), they were trans-
ferred to individual lidded 0.5 l plastic deli cups with 
ASW-moistened paper towels. Metamorphs were 
swabbed thoroughly (5 times each down both hind 
limbs, covering their ventral surface and covering 
their dorsal surface) to verify that they were not Bd+. 
We used quantitative PCR (qPCR) to detect Bd (see 

Section 2.5), and all metamorphs were Bd-free. 
Throughout the experiment, frogs were monitored 
daily for mortality, they were fed calcium dusted 
crickets ad libitum, and containers were changed 
weekly. 

2.4.  Metamorphic exposure experiment 

Frogs were randomly assigned to their treatment 
(KZM, KZA, and ASWC). During the prophylactic 
exposure period, each metamorph (n = 15 treat-
ment−1) was exposed to their respective prophylaxis 
daily for 14 d. For each metamorph, 1 ml the prophy-
laxis was pipetted directly on their dorsal surface, 
and the excess liquid was allowed to collect on the 
moist paper towels in the enclosure. After the pro-
phylactic exposure period, all metamorphs were 
exposed individually to 1 ml of live Bd (1.2 × 105 zoo-
spores ml−1). They were maintained for 2 wk post 
exposure, and then each individual was swabbed for 
qPCR processing on the right hind limb from hip to 
toe 10 times with a sterile cotton swab. 

2.5.  Quantitative PCR 

We used PrepMan Ultra (Applied Biosystems) to 
extract DNA from each swab and then followed the 
protocol described by Hyatt et al. (2007) to process 
the qPCR samples. We screened for inhibition in all 
samples using TaqMan Exogenous Internal Positive 
Control Reagents (Applied Biosystems) and found no 
evidence of inhibition. 

2.6.  Statistical analysis 

All statistical analyses were performed using R 
v.4.0.3 (R Core Team 2020). A Cox proportional-
 hazards model was used to determine whether there 
was an effect of treatment on mortality (package: KM
surv; function: coxph). A generalized linear model 
with a zero-inflated negative binomial distribution 
was used to simultaneously determine if there was 
an effect of treatment on prevalence, i.e. zero-infla-
tion, and infection intensity (package: glmmTMB; 
function: glmmTMB; ziformula = ~ treatment; this 
function examines both prevalence and intensity 
simultaneously); animal mass was used as a cova -
riate. An estimated marginal means test was run 
to make pairwise comparisons among treatments 
(package: emmeans; functions: emmeans and pairs). 
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3.  RESULTS 

There was no effect of treatment on mortality (χ2
1 = 

4.28, p = 0.118), and mortality was low for all treat-
ments (13, 6, and 13% for Killed Zoospores with Meta -
bolites (KZM), Killed Zoospores Alone (KZA) and ASW 
Control (ASWC), respectively). Metamorphs ex posed 
to the KZM prophylaxis had reduced Bd intensity 
compared to those exposed to the ASWC (t = 2.91, p = 
0.016; Fig. 1) but not compared to those exposed to 
the KZA treatment (t = 1.34, p = 0.391). There was no 
difference in Bd intensity between the ASWC and 
the KZA treatment groups (t = 1.89, p = 0.155). There 
was no effect of treatment on Bd prevalence (ASWC: 
60% prevalence, z = −0.769, p = 0.442; KZA: 75% 
prevalence, z = −1.28, p = 0.201; and KZM: 53% 
prevalence, z = 0.368, p = 0.713). 

4.  DISCUSSION 

We found that a prophylactic treatment containing 
killed zoospores and Bd metabolites together re -
duced Bd infection intensities in metamorphic Pacific 
chorus frogs by 60.4% compared to controls. Inter-
estingly, Bd infection intensities in the Killed Zoo-
spores Alone (KZA) treatment were not significantly 
different compared to the Killed Zoospores with 
Meta bolites (KZM) or control treatment. While we 
cannot say that the KZM yielded more protection 
than the KZA from this study, evidence from previ-

ous work found that the prophylactic treatments that 
contained Bd metabolites yielded the strongest pro-
tection for tadpoles and adults (McMahon et al. 2014, 
Nordheim et al. 2022). All the available evidence 
suggests that the soluble Bd metabolites contain Bd-
resistance inducing component(s) and can be used as 
an effective prophylaxis treatment. 

There was no effect of treatment on Bd prevalence. 
While this Bd metabolite prophylaxis has been found 
to reduce Bd intensity repeatedly, some studies 
found that it reduced prevalence while others did not 
(McMahon et al. 2014, Barnett et al. 2021, Nordheim 
et al. 2022). It is possible the differences we have 
seen on prevalence are due to species differences or 
a lack of statistical power to detect effects on Bd 
prevalence in some of these studies. 

For a wildlife prophylaxis to be effective at the pop-
ulation level, it would need to substantially contribute 
to herd immunity by reducing infection or transmis-
sion among a large proportion of the population or 
community (Barnett & Civitello 2020). Given that the 
loads measured represent zoospores, the propagules 
of transmission, such reductions are likely to represent 
reduced transmission rates as well. In deed, Bd load 
positively influences the zoospore pool, which in turn 
positively influences the transmission parameter (Briggs 
et al. 2010). Our results add evidence for induced 
resistance to Bd in metamorphic frogs to existing 
demonstrations in tadpoles (Nordheim et al. 2022) 
and adults (McMahon et al. 2014). The ability to in-
crease resistance in all life stages of amphibian hosts 

substantially increases the potential for 
population and community-wide pro-
tection and persistence. The findings 
from this study are particularly impor-
tant because, along with tadpoles, meta -
morphs are found in high abundance in 
comparison to adults. Moreover, meta -
morphs are the most susceptible life 
stage to Bd for most amphibian taxa 
(Sauer et al. 2020; but see Bradley et al. 
2019). Providing protection for this es-
pecially vulnerable life stage could 
have strong population-level benefits. 

The fact that this prophylactic treat-
ment reduces Bd load in 2 species, 
Cuban treefrogs (McMahon et al. 2014, 
Barnett et al. 2021, Nordheim et al. 
2022) and Pacific chorus frogs, has con-
siderable implications for Bd disease 
mitigation strategies. For instance, the 
Pacific chorus frog is an important main-
tenance host for Bd when co-occurring 
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Fig. 1. Effects of prophylactic treatments on Batrachochytrium dendrobatidis 
(Bd) infection intensity in Pacific chorus frog Pseudacris regilla metamorphs. 
Top and bottom of the box: 75th and 25th percentiles, respectively; horizontal 
line: median; x: mean; whiskers: minimum and maximum values. Letters  
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with other amphibians (Wilber et al. 2020). Thus, the 
ability to reduce the pathogen load in a reservoir host 
like the Pacific chorus frog could dramatically reduce 
the infection risk of co- occurring species, including 
those that are threatened by Bd or other stressors. In 
fact, Pacific chorus frogs were found to contribute to 
the maintenance of Bd in 91% of metacommunities 
observed in the San Francisco Bay area study system 
(Wilber et al. 2020). Thus, lowering infection intensity 
in this maintenance host may reduce Bd disease risk 
in the field. 

Prophylactic treatments may be a promising path 
towards protecting amphibians from Bd related ex -
tinctions. Previous microbiome-related prophylaxis 
research found direct exposure to prophylactic treat-
ments containing the betaproteobacterium Janthino -
bacterium lividum reduced Bd infections and increased 
survival (Becker et al. 2009). We now highlight, using 
a similar direct exposure method, that the Bd metabo-
lite-containing prophylactic treatments described 
here are also protective across amphibian life stages 
and species. This work is especially promising given 
that other management research has  utilized antifun-
gal chemicals as a post exposure treatment and found 
mixed results (McMahon et al. 2013b). Additionally, 
the use of these often-immunomodulatory chemicals 
may actually cause harm to the ecosystem rather than 
help (Rohr et al. 2017). Importantly, the potential to 
use the same treatment for all life stages and multiple 
species will make the prophylaxis treatment logisti-
cally simpler and less expensive to implement in the 
field. More research is needed to determine whether 
the protective effects of this treatment will wane with 
time, which components of the Bd metabolites yield 
the strongest effects, how effective the treatment is on 
other amphibian species, and whether there are ef-
fects on non-target organisms. This Bd metabolite 
prophylaxis is likely producible at a large scale, though 
local Bd strain should be taken into consideration (see 
Barnett et al. 2021) and therefore has the potential to 
be used on a large scale in the lab and field. It is cru-
cial that continued refinement of this prophylaxis 
treatment and investigation of these unanswered 
questions occur prior to large-scale field implementa-
tion. With those important cautions in mind, this pro-
phylactic treatment has the potential to protect a wide 
range of amphibians and may possibly be used as an 
effective disease management tool to help control this 
devastating wildlife disease. 
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