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Abstract
Aquatic pathogens often cannot tolerate drying, and thus their spread, and diversity across a landscape may depend on 
interactions between hydrological conditions and the movement of infected hosts. The aquatic fungus Batrachochytrium 
dendrobatidis (Bd) is a nearly ubiquitous pathogen of amphibians and particular lineages have been associated with host 
declines. By coupling amphibian surveys with molecular pathogen detection and genotyping techniques, we characterized 
the spatial dynamics and genetic diversity of Bd on a landscape containing both permanent and ephemeral ponds. In doing 
so, we aimed to clarify how pathogen loads and prevalences vary across seasons and among habitat types, and which host 
species move the pathogen from place to place. At the start of spring breeding, Bd prevalence was lower on amphibians 
sampled from ephemeral ponds. For the remainder of the amphibian active season, prevalence was similar across both ephem-
eral and permanent ponds, with variation in prevalence being well-explained by a hump-shaped relationship with host body 
temperature. The first amphibians to arrive at these ephemeral ponds infected were species that breed in ephemeral ponds 
and likely emerged infected from terrestrial hibernacula. However, species from permanent ponds, most of which hibernate 
aquatically, later visited the ephemeral ponds and these animals had a greater prevalence and load of Bd, suggesting that 
migrants among ponds and pond types also move Bd across the landscape. The Bd we sampled was genetically diverse within 
ponds but showed little genetic structure among ponds, host species, or seasons. Taken together, our findings suggest that Bd 
can be diverse even at small scales and moves readily across a landscape with help from a wide variety of hosts.
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Introduction

As infectious diseases emerge with increasing frequency 
and impact wildlife populations (Smith et al. 2009), it 
becomes ever more critical to understand the links between 
environment, host–pathogen biology, and disease dynam-
ics (Johnson and Paull 2011; Rizzoli et al. 2019). Fungal 
diseases such as white nose syndrome in bats (Foley et al. 
2011), snake fungal disease (Ophidiomyces ophidiicola, 
Guthrie et al. 2016), and chytridiomycosis in amphibians 
(Berger et al. 1998; Fisher et al. 2009) have been important 
drivers of recent wildlife declines and extinctions. While 
host-fungal pathogen systems have received increased 
research attention in recent years (reviewed in Fisher 
et al. 2012), important questions remain about how fungal 
pathogens move across and persist in different landscapes.

To understand how pathogens are transmitted between 
individuals and across communities, it is critical to under-
stand how infection dynamics differ across habitat types 
and how pathogens move from place to place (Kozakie-
wicz et al. 2018; White et al. 2018). For fungal pathogens 
like Batrachochytrium dendrobatidis (Bd), one of two 
chytrid fungi that cause chytridiomycosis in amphibians 
(Longcore et al. 2007; Martel et al. 2013), the presence 
of a motile infectious zoospore stage means that trans-
mission to new hosts readily occurs in aquatic environ-
ments (Greenspan et al. 2012a) and may even be possible 
through rain or fog (Kolby et al. 2015; Prado et al. 2023). 
Even in the absence of hosts, some fungal pathogens can 
persist in aquatic environments for long periods of time. 
For example, the motile aquatic zoospores of Bd can per-
sist for up to 7 weeks in pond water (Johnson and Speare 
2003), though they cannot survive desiccation for more 
than 30 min (Garmyn et al. 2012). Perhaps unsurpris-
ingly then, in many areas, host species associated with 
permanent ponds (Kriger and Hero 2007) and streams 
(Hero et al. 2005; Gründler et al. 2012) are more likely to 
become infected with Bd than species inhabiting terrestrial 
habitats or ephemeral waterbodies. The tadpoles are gen-
erally restricted to their natal aquatic environment (Hoff 
et al. 1999) and as a result, infections on new metamorphs 
emerging for the first time onto land are a product of the 
pathogen pool in their natal environment (Wilber et al. 
2017). However, the post-metamorphic hosts can move 
between aquatic habitats (Regosin et al. 2003), potentially 
bringing new pathogen variants to other permanent water 
bodies and introducing pathogens into habitats that lack 
permanent water (and therefore, could not likely sustain 
pathogens like Bd year-round, Garmyn et al. 2012).

The distribution of Bd prevalence and load on infected 
hosts depends on a variety of environmental factors includ-
ing pH, temperature, canopy cover, and pond depth (Raffel 

et al. 2010; Sonn et al. 2019; Prahl et al. 2020). Bd growth 
is strongly temperature-dependent both in vitro (Voyles 
et al. 2017) and in vivo (Raffel et al. 2010). For exam-
ple, in culture, Bd grows well at cool temperatures and 
can even withstand freezing, but maximal growth of most 
strains occurs between 17 and 25 °C (Voyles et al. 2017). 
In the wild, seasonal variation in temperature and humid-
ity and the differences in these environmental variables 
between sites due to forest cover are known to mediate 
Bd infection prevalence and load (Retallick et al. 2004; 
Becker et al. 2012; Beyer et al. 2015; Sonn et al. 2019). 
However, Bd dynamics in ponds may also depend on the 
presence of amphibian (Padgett-Flohr and Hopkins 2009) 
and/or non-amphibian (McMahon et al. 2013; Brannelly 
et al. 2015) host species.

Given that Bd and many other aquatic pathogens can-
not tolerate desiccation (Garmyn et al. 2012), one mecha-
nism for multi-year persistence in ephemeral ponds may 
be the movement of infected hosts from permanent to 
ephemeral ponds. The ephemeral ponds are unique habi-
tats often owing to their reduced predator pressure, sup-
port reproduction, and early development of many inver-
tebrates and amphibians (Hopey and Petranka 1994). In 
contrast, permanent ponds are usually larger habitats that 
hold water throughout the year and often are inhabited by 
predatory fish, as well as a diverse community of other 
small-bodied invertebrates and vertebrates that prey on 
amphibian larvae (Wellborn et al. 1996). Because perma-
nent ponds that are sufficiently deep do not freeze to the 
bottom, many species, including larval and adult amphib-
ians (McDonald and Alford 1999), overwinter in these 
environments and can maintain aquatic pathogens like Bd 
on the landscape (Greenspan et al. 2012b; Becker et al. 
2019). In eastern North America, some amphibian hosts 
like northern leopard frogs (R. pipiens), green frogs (R. 
clamitans), and bullfrogs (R. catesbeiana) usually over-
winter and/or reproduce in permanent ponds but migrate to 
ephemeral ponds in late spring/early summer (Neill 1948), 
potentially carrying pathogens to ephemeral pond com-
munities. Other species, like wood frogs (R. sylvatica) and 
spotted salamanders (Ambystoma maculatum), reproduce 
either preferentially or exclusively in ephemeral ponds and 
other semi-permanent water bodies (Karraker and Gibbs 
2009). These species, which tend to overwinter terrestri-
ally (Storey and Storey 1984) and reproduce very early in 
spring, could also bring pathogens to ephemeral ponds if 
they emerge from hibernation infected or acquire infec-
tions during migration to breeding ponds. Understanding 
how Bd and other aquatic pathogens spread to and from 
ephemeral ponds and how both aquatic communities con-
tribute to the landscape-level dynamics of host–pathogen 
interactions, will be important for predicting disease risk 
and developing mitigation strategies.
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The genetic diversity and structure of wildlife patho-
gens can provide important clues about how they move 
across landscapes to colonize new habitats and hosts 
(Blanchong et al. 2016; Kozakiewicz et al. 2018). For 
example, low genetic diversity and structure may indicate 
that a pathogen has been either recently introduced or that 
selective sweeps have resulted in the fixation of locally 
beneficial alleles. In contrast, high genetic diversity is 
expected when pathogens can colonize new habitats fre-
quently and from a variety of source populations, or when 
an endemic pathogen is evolving in situ to a variety of 
different environments (such as host species, e.g., Byrne 
et al. 2022). When pathogens move readily across a land-
scape a panmictic pathogen population may result, with 
little population genetic structure being found among 
habitat patches. However, finding strong spatial and/or 
temporal population genetic patterns can help reveal key 
barriers to dispersal or potential mechanisms of spread 
(reviewed in Barrett et al. 2008).

Thus far, five lineages of Bd have been described 
(O’Hanlon et al. 2018; Byrne et al. 2019). The Bd Global 
Panzootic Lineage (GPL), which has been associated with 
global declines and extinctions, appears to have diverged 
from its most recent ancestor and spread worldwide 50 
to 120 years ago (Rosenblum et al. 2013; O’Hanlon et al. 
2018). In the United States, Bd has been detected from 
amphibian specimens collected as far back as 1888 (Tal-
ley et al. 2015). Recent work suggests that many genetic 
variants belonging to the GPL are infecting amphibians 
in the United States (Byrne et al. 2019) and that many are 
shared across ponds and host species (Byrne et al. 2022).

Here, we quantify and genotype Bd found on amphib-
ian skin swabs to provide a fine-scaled understanding of 
the host distribution, genetic diversity, and genetic struc-
ture of this pathogen across a landscape of ephemeral 
and permanent ponds. We aimed to answer three key 
questions: (1) How does Bd load and prevalence change 
across the amphibian active season in ephemeral versus 
permanent ponds? (2) Which amphibians play a role in 
moving Bd from place to place? and (3) Are there differ-
ences in the genetic diversity and structure of Bd across 
the landscape? To answer these questions, we used a 
combination of modern molecular tools and traditional 
ecological techniques. Namely, we used a multi-year 
amphibian skin swab and environmental DNA (eDNA) 
surveys at five ephemeral and five permanent ponds in 
northwestern Pennsylvania to answer question one. To 
answer questions two and three, we coupled traditional 
mark-recapture studies at two drift-fenced ephemeral 
ponds with molecular techniques that enabled both quan-
tification and genotyping of Bd from amphibian skin swab 
samples.

Methods

Unfenced pond surveys

From 2017 to 2019, we sampled amphibians from five 
ephemeral and five permanent ponds in northwestern 
Pennsylvania, near the Pymatuning Lab of Ecology (PLE; 
Fig. 1; Table S1) using visual encounter surveys (see sup-
plemental methods) for post-metamorphic animals and dip 
netting for larvae. We sampled each pond once per month 
from March to September in 2017 and 2018. In 2019, we 
sampled only four of the ten ponds (two ephemeral and 
two permanent) once in each of April, May, June, July, and 
October. Prior to amphibian surveys in 2018 and 2019, we 
also collected 1 L of water from a subset of ponds for Bd 
detection/quantification via environmental DNA (eDNA, 
see details in supplemental methods). For each captured 
individual, we recorded species, skin temperature, sex, life 
stage, mass (using a Pesola spring scale), snout-to-vent 
length (SVL) and, for salamanders, tail length (using dial 
calipers), and collected a skin swab sample to test for Bd 
(see supplemental methods) before releasing the animal 
near the point of capture. After swabbing and taking all 
measurements, we released each animal near the location 
where it was captured. We caught most of the amphibians 
by hand, using a fresh pair of nitrile gloves to prevent 
pathogen transmission (Phillott et al. 2013). We collected 
data from up to 20 individuals of each amphibian spe-
cies that was detected at each pond during each survey 
(Table S2).

Pitfall‑trap surveys at fenced ephemeral ponds

In 2019, we conducted more intensive amphibian sur-
veys at only two ephemeral ponds—Wood Lab pond and 
Sanctuary Lake pond (1 and 3, respectively in Fig. 1 and 
Table S1)—around which we installed drift fences and 
pitfall traps from March to August 2019. Sanctuary Lake 
pond is in a more developed area, is both smaller and shal-
lower, and generally has a shorter hydroperiod than Wood 
Lab pond (see Supplemental Methods and Table S5 for 
additional details about study sites). We installed the drift 
fences 1–3 m from the water’s edge to intercept amphib-
ians moving to and from the pond. A team of two people 
sampled these ponds, checking traps once or twice per day 
for amphibians, for 40 sampling days between March 14 
and August 8 of 2019 (see supplemental methods). After 
collecting temperature data and skin swabs as described 
above, we recorded capture location (outside or inside 
fence, in pitfall trap or not) and, for animals found in 
traps, whether the animal was alone or with other captured 
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amphibians. We cohort-marked each animal with a toe clip 
in order to distinguish new arrivals to the ponds from ani-
mals we had sampled before and released each animal on 
the opposite side of the fence from where it was captured.

DNA extraction and qPCR

We extracted genomic DNA from water samples for Bd 
quantification via eDNA following a modified version of 
the protocol described in Renshaw et al. (2015) (see details 
in supplemental methods). We extracted genomic DNA 
from swabs using the Qiagen DNeasy Extraction Kit (see 
details in supplemental methods). We then ran a qPCR 
assay (Blooi et al. 2013, see also supplemental methods) 

on both sample types to detect and quantify Bd and B. 
salamandrivorans (Bsal) DNA. We included negative and 
positive control samples and a sevenfold dilution series of 
plasmid standards (2.6 to 2.6 ×  106 copies/reaction, Pisces 
Molecular, CO) in each qPCR run. To generate negative 
controls, we ran our DNA extraction protocol on a clean 
swab or, for eDNA, a liter of tap water. To create positive 
extraction controls we extracted DNA from a swab that 
had been dipped in a broth culture of Bd. We ran samples 
in singlicate and for swab samples calculated whole-swab 
Bd load by multiplying detected Bd DNA copies by 40 to 
account for the proportion of the full extraction that was 
aliquoted for qPCR.

Fig. 1  Maps indicating (upper right) the location of our study region 
(white star), within the Great Lakes region of northeastern North 
America and (lower left) the locations of ponds sampled around the 
Pymatuning Reservoir. Squares indicate fenced ponds and circles 
unfenced ponds. Ponds 1 (Wood Lab pond) and 3 (Sanctuary Lake 
pond) were fenced in 2019. Ephemeral ponds are in teal and perma-

nent ponds in orange. Numbers correspond to Table  S1. Distances 
between ponds range from 0.25 to 17  km. Maps are from Google 
Earth v. 7.3.4.8642 (64-bit), accessed on 25 August 2022. Only ponds 
1, 2, 3, and 4 were sampled in 2019 whereas all ponds were sampled 
in 2017 and 2018
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Statistical analyses

We performed all statistical analyses involving qPCR data 
using R Studio 2019 (Racine 2012) with R version 1.1.5019 
(R Core team 2019) and produced figures using ggplot2 
(Wickham 2009). We used DHARMa (Hartig 2019) and 
visual assessments of residuals plots to confirm that model 
assumptions were met. The detailed model descriptions and 
outputs can be found in the supplemental material (supple-
mental methods, Tables S5–S16).

To test how Bd prevalence (including all sampled ani-
mals) and infection load (which in all our analyses included 
only animals that tested positive for Bd) varied over time 
and with temperature in the unfenced ponds (five ephemeral 
and five permanent ponds, 2017–2019), we fit generalized 
additive mixed models (GAMMs) using the mgcv package 
(Wood 2017). We removed two species with very low sam-
ple sizes: Ambystoma jeffersonianum (n = 1) and Hemidac-
tylium scutatum (n = 4). GAMMs were used to model non-
linear patterns in Bd prevalence and load across the year and 
with varying temperature. We used GAMMs because these 
patterns were clearly non-linear and would not meet assump-
tions of linear models. The models for prevalence were run 
with a binomial distribution, with infection status (positive 
or negative) as the response variable. We included pond type 
(ephemeral or permanent) as a fixed effect in all models and 
also included animal body mass as a fixed effect in infec-
tion load models, given a possible relationship between load 
and amphibian size. For each response variable (infection 
prevalence or load), we ran one model with Julian date by 
pond type as a smoothed effect (spline (k) = 20 and one with 
body temperature (˚C) (instead of Julian date) by pond type 
included as a smoothed effect. For all models, pond (i.e., site 
code), species (or the species-specific effects of body size for 
infection load models), and year were included as smoothed 
random effects. We fit the models with REML, ran diagnos-
tic tests to determine whether the basis dimension choice 
was adequate and to assess diagnostic plots (library: mgcv, 
function: gam.check) and checked for concurvity (library: 
mgcv, function: concurvity). Some models demonstrated 
significance in the gam.check function, which may indicate 
the k is too low. However, the effective degrees of freedom 
(EDF) were not close in value to k’, even at high values (e.g., 
k = 100). Following Wood (2017), results were consistent at 
k = 20 and above, so k = 20 was used.

Given the unequal distribution of tadpole samples across 
ponds, seasons, and years, and the relatively low number of 
tadpole samples overall (Tables S2 and S3), we did not have 
sufficient power to use GAMMs to compare Bd prevalence 
across life stages. Therefore, to compare Bd infection status 
between the two life stages (larval vs. post-metamorphic), 
we used a GLMM (package lme4, function ‘glmer’, Bates 
2010) with a binomial distribution including life stage, pond 

type, species, and their interactions as fixed effects and pond 
as a random effect. To alleviate violation of the equal vari-
ance assumption, we only included the four species with suf-
ficient sampling across ponds and life stages in this model. 
We did not test for differences in Bd load between the two 
life stages because there were too few (only 15/167) infected 
tadpoles.

The next set of analyses included subsets of captures of 
post-metamorphic animals found entering or leaving the 
two fenced ponds in 2019. For infected animals entering the 
fenced ponds for the first time during our study period (i.e., 
animals that had no toe clip), we compared Bd prevalence 
among species hibernating in permanent ponds relative to 
those hibernating terrestrially. To do this, we analyzed a sub-
set of data that included only amphibians that were known to 
hibernate either terrestrially (Ambystoma maculatum, A. jef-
fersonianum, Hemidactylium scutatum, Plethodon cinereus, 
R. sylvatica, P. crucifer, and A. americanus) or in permanent 
ponds (R. clamitans, R. pipiens, and R. catesbeiana) and 
only included data from an individual’s first capture outside 
the fence (i.e., on their way into the pond for the first time). 
We used a GLMM (package lme4, function ‘glmer’) with 
a binomial distribution that included hibernation type (ter-
restrial vs. permanent pond, based on species natural his-
tory), pond (because there were different species arriving to 
the two fenced ponds), and their interaction as fixed effects. 
We included species as a random effect. To compare Bd 
load between the two hibernation types (permanent pond vs. 
terrestrial), we used a linear mixed model (function ‘lme’) 
that included hibernation type, pond, and their interaction 
as fixed effects and species as a random effect.

To test for differences in Bd load between infected ani-
mals entering vs. leaving the fenced ponds, we fit a linear 
mixed model using generalized least squares (GLS LMM 
using nlme package, function ‘gls’). In this case, we used 
a GLS LMM instead of a GLMM because a GLMM failed 
the uniformity check. We, therefore, re-fit the model using 
the nlme package in R (Pinheiro et al. 2022) with a vari-
ance structure to account for unequal variance across groups, 
which addressed the violation. The model included hiberna-
tion type (terrestrial vs. permanent pond, based on species 
natural history), migration direction (i.e., whether the animal 
was captured inside the fence and was leaving or was cap-
tured outside the fence and was coming into the pond), pond, 
and the interaction between hibernation type and migration 
direction as fixed effects. Species was not included as a ran-
dom effect in this model because doing so led to violations 
of model assumptions that we were unable to reconcile. To 
compare Bd infection status between animals entering vs. 
leaving the fenced ponds, we used an analogous GLMM 
(package lme4, function ‘glmer’) with a binomial distribu-
tion and including all captures (not just those where the ani-
mal was infected).
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Bd genotyping and analyses of genetic variation

We selected 110 of the 294 Bd-positive (by qPCR) swab 
samples collected from the two ephemeral pond sites in 2019 
for Bd genotyping. These were selected to balance sample 
sizes among ponds, seasons, and host species. However, to 
improve the odds of generating good quality genotype data, 
we prioritized DNA extracts with higher copy numbers of 
Bd DNA. We used the Fluidigm Access Array platform to 
perform microfluidic multiplex PCR on 191 regions of the 
Bd genome and one diagnostic locus for the closely related 
fungus Bsal (see supplemental methods and Byrne et al. 
2017). Each target locus is 150–200 base pairs long and the 
targets are distributed across the Bd nuclear and mitochon-
drial genomes.

We used a gene-tree to species-tree approach (see sup-
plemental methods) to construct a phylogeny to explore the 
relationship of the Bd genotypes found in our samples to 
previously published Bd samples representing all known Bd 
lineages (N = 31, Byrne et al. 2019; Rosenblum et al. 2013). 
To further explore the genetic variation of Bd sampled from 
amphibians at the two fenced ponds, we used a principal 
components analysis (PCA) on variants called from haplo-
types (see supplemental methods). To evaluate the relative 
contribution of season, pond, whether the sampled individ-
ual was entering or leaving the pond, and host species, we 
ran an analysis of molecular variance (AMOVA) (Excoffier 
et al. 1992) using our variant data.

Results

Bd infection and eDNA detections over time 
in permanent and ephemeral ponds

More than one-third (37.5%) of the 4898 amphibians, 
we swabbed, tested positive for Bd (Tables S2, S4) while 
none tested positive for Bsal. While pond type (ephem-
eral vs. permanent) was not a significant predictor of Bd 
prevalence overall (GAMM: � = −0.070, SE = 0.384, 
p = 0.855; Table S5), prevalence in both pond types var-
ied with Julian day (hereafter, JD; GAMM: JD by ephem-
eral pond [smoothed term]: �2 = 243.9, reference degrees 
of freedom [rf] = 13.75, p < 0.001; JD by permanent pond 
[smoothed term]: � 2 = 295.9, rf = 17.66, p < 0.001). Mod-
els predicted that Bd prevalence was greater in permanent 
ponds than ephemeral ponds when animals first emerged 
from hibernation (JD 60–100; Fig. 2A and Fig. S4A, 24.4% 
[CI: 10.9–37.8%] on average for ephemeral ponds, and 
58.2% [CI: 40.6–75.8% for permanent ponds]. However, 
by the middle of spring (JD 100–140), the model predicted 
Bd prevalence had peaked to similar levels in both pond 
types (predicted prevalence was 57% [CI: 47.4–66.6%] 

for ephemeral and 77.2% [CI: 65.8–88.7%] for permanent 
ponds). Bd prevalence was then predicted to decrease in late 
spring to early summer (JD 140–180; 32.8% [CI: 21.6–44%] 
in ephemeral and 41.6% [29.6–53.6%] in permanent) and by 
mid-summer (JD 180–230) Bd prevalence was predicted to 
be similar in ephemeral ponds and permanent ponds (38.1% 
[CI: 27.2–49%] in ephemeral and 34.2% [CI: 24.4–44%] in 
permanent).

Our model predicted that Bd load (in mean ± SE  log10 
DNA copies per swab) varied over time. The visualization 
of Fig. 2C suggests that while Bd load was similar at the 
start of the amphibian active season (JD 66–74; predicted 
load 3.11 ± 0.24), it was predicted to increase in perma-
nent ponds (to 3.5 ± 0.241) in late winter to early spring 
(JD 84–104) then decline again in late spring to early sum-
mer (JD 140–180). In contrast, in ephemeral ponds Bd load 
decreased throughout the year (GAMM: JD by ephemeral 
pond [smoothed term]: F = 4.050, rf = 2.381, p = 0.013; JD 
by permanent pond [smoothed term]: F = 9.172, rf = 8.228, 
p < 0.001; Table S6; Fig. 2C, Fig. S4C).

The relationship between amphibian body tempera-
ture and Bd prevalence was not predicted to differ signifi-
cantly between pond types (GAMM: � = 0.005, SE = 0.345, 
p = 0.988; Fig. 2B; Fig. S4B; Table S7). In both pond types, 
Bd prevalence varied with body temperature in a similar 
fashion (GAMM: temperature by ephemeral pond [smoothed 
term]: �2 = 91.26, rf = 7.333, p < 0.001; temperature by 
permanent pond [smoothed term]: �2 = 128.71, rf = 8.313, 
p < 0.001, Table S7); the predicted prevalence increased 
from 3 to 13 °C and then decreased. There were no dif-
ferences in the relationship between body temperature and 
Bd infection load between permanent and ephemeral ponds 
(GAMM: � = 0.137, SE = 0.150, p = 0.357; Fig. 2D; Fig. 
S4D; Table S8). Overall, Bd load decreased with increasing 
body temperatures.

We did not test statistically for variation in Bd eDNA 
concentration or detection in ephemeral and permanent 
ponds due to small sample sizes per season and pond type 
(Table S9). However, some differences were noted upon vis-
ual inspection. For example, we detected Bd DNA in more 
than 1/3 (21 of 54) of samples collected in spring or summer 
but only rarely (in 1 of 14 samples) in winter or fall. When 
we did detect Bd eDNA, its concentration was similar among 
pond types and seasons (means 3046–3515 DNA copies per 
liter, Table S9).

Bd load and prevalence in tadpoles 
and post‑metamorphic animals

Bd prevalence was greater for post-metamorphic animals than 
tadpoles in both pond types (GLMM: t =  − 3.718, p < 0.001, 
Fig. S1B, Table S10); only 15 of 167 tadpoles (9%) tested 
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positive for Bd whereas 1812 of 4667, post-metamorphic 
amphibians (39%) were Bd-positive.

We were unable to compare Bd load on infected animals 
across life stages statistically due to low numbers of infected 
tadpoles. The mean load on infected tadpoles (in  log10 DNA 
copies per swab) was 2.319 (range 1.251–5.438) while for 
post-metamorphic animals the mean load was 3.382 (range 
0.769–7.160; Fig. S1A).

Bd infections in animals arriving to the fenced 
ephemeral ponds

Our first survey of the fenced ponds was at Wood Lab 
pond (pond 1) on March 14 of 2019, 10 days after the ice 
covering that pond had completely melted. On that day, 
we found wood frogs (Rana sylvatica, n = 11), red-backed 
salamanders (Plethodon cinereus, n = 2) and spotted 

Fig. 2  Generalized additive model (GAMM) predictions of Batra-
chochytrium dendrobatidis (Bd) prevalence by A Julian day (JD) and 
B amphibian body temperature (in ºC), and  log10 Bd load by C JD 
and D amphibian body temperature in ephemeral (teal color) versus 
permanent (orange color) ponds (data collected from 2017 to 2019). 

In these predictions, all additional random effects are fixed at their 
mean or mode, depending on the factor. Raw data have been superim-
posed and the shaded areas show 95% pointwise confidence limits. In 
this region, JD 81–172 is spring, JD 173–264 is summer, JD 265–355 
is fall, and JD 356–80 is winter
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salamanders (Ambystoma maculatum, n = 21) along the 
fence and in the traps. Only two of these animals (both A. 
maculatum) tested positive for Bd. The amphibians did not 
arrive to Sanctuary Lake pond (pond 3) until April and on 
our first survey there (April 5 of 2019) three species were 
encountered; three spring peepers (Pseudacris crucifer, 
n = 5) one American bullfrog (Rana catesbeiana, n = 1) 
and one American toad (Anaxyrus americanus, n = 1) 
tested positive for Bd.

Bd load on infected post-metamorphic animals at first 
entry into the fenced ephemeral ponds differed among 
hibernation types (LMM: t = 3.103, p = 0.003; Table S11), 
where the Bd load was greater for species that hibernate 
in permanent ponds than for individuals of species that 
hibernate terrestrially (Fig. 3A); this pattern was clearer 
in animals from the Wood Lab pond (pond 1), though the 
interactive effect of pond site and hibernation type was 
not significant (LMM: t = 1.949, p = 0.054; Table S11; 
Fig. 3A). There was a significant interactive effect of pond 
and hibernation type on Bd status. Terrestrial hibernators 
had lower prevalence than pond hibernators at Wood Lab 
(pond 1), whereas Bd status was more similar among 
hibernation types at Sanctuary Lake (pond 3) (GLMM: 
z = 4.122, p < 0.001; Fig. 3B; Table S12).

Patterns of infection in post‑metamorphic animals 
entering vs. leaving the fenced ponds

When data were pooled across all infected post-metamor-
phic animals, including all (i.e., first and subsequent) cap-
tures of infected animals moving into (i.e., captured outside 
the fence) and out of (i.e., captured inside the fence) the 
ponds, Bd load was higher in permanent pond hibernat-
ing species than in terrestrially hibernating species (GLS 
LMM: t =  − 4.067, p < 0.001; Fig. 4, Table S13). There was 
no significant difference between the Bd loads of infected 
animals coming into the fenced ponds and those leaving the 
fenced ponds and also no significant interaction between 
hibernation type and animals entering vs. leaving the pond 
(GLS LMM: t = 1.296, p ≥ 0.196) for Bd load. The results for 
associations between hibernation type, movement direction, 
and Bd status (i.e., infected or not) matched those for Bd load 
(Fig. 4, Table S14).

Genetic diversity and structure in the fenced ponds

Only 28 of the 110 amphibian skin swab samples sent for 
genotyping produced enough sequence data for down-
stream analyses. These 28 samples included six of the eight 

Fig. 3  Box and whisker plots showing the relationship between  log10 
Bd load per swab for infected animals (A), and the proportion of post-
metamorphic individuals infected with Bd (B), upon first arrival to 
the fenced ponds by hibernation type (terrestrial: N = 58 vs. aquatic: 

N = 54). In (A), each dot represents one individual. In (B), points 
represent the proportion of individuals infected. The error bars repre-
sent 95% confidence intervals calculated using the Clopper–Pearson 
method (Clopper 1934)
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amphibian species sampled at the two fenced ephemeral 
ponds and were collected between April and August of 
2019. Bd load, as estimated via qPCR, was not a significant 
predictor of whether a skin swab sample produced the qual-
ity of haplotype data needed for analysis (GLM: t = 0.603, 
p = 0.547; Table S15).

The first two principal components (PCs) describing the 
genetic variation in the 28 genotyped samples explained 
33.8% of the total variance in haplotypes. To visualize how 
the genetic variation was distributed, we plotted the first two 
PCs by pond (Fig. S2A), by whether animals were sampled 
coming into or going out of the pond (Fig. S2B), and by 
season (spring vs. summer, Fig. S2C). In all cases, there 
was visual overlap in haplotype variation among the sample 
categories and AMOVAs showed no significant structure 
among ponds, by direction of animal movement, or by sea-
son (999 permutations, p ≥ 0.163; Fig. S3; Table S16). We 
were not able to test for the effect of host species on Bd 
genotypes because of small sample sizes for each species.

The phylogeny of Bd genotypes from the swab samples 
revealed a great deal of diversity (i.e., many haplotypes) 
among samples from each pond and some genetic structure; 
one haplotype from Sanctuary Lake pond fell within the Bd 
GPL1 clade while many other haplotypes from that pond 
and from Wood Lab pond fell within Bd GPL2. Many of the 

samples from Wood Lab pond had haplotypes that are highly 
heterozygous, and therefore could be indicative of animals 
having been coinfected with both Bd GPL clades (GPL1 and 
GPL2). We could not distinguish coinfection from the pos-
sibility of infection by a hybrid Bd strain using our dataset. 
We did not see any obvious phylogenetic structure among 
samples from the two ponds, among host species, among 
samples collected during different seasons, or among sam-
ples from animals entering vs. leaving the ponds (Fig. 5).

Discussion

The number of reported fungal and fungal-like pathogens 
responsible for disease outbreaks and declines in freshwa-
ter animals, including amphibians (Fisher et al. 2009), fish 
(Gozlan et al. 2010; Gozlan 2012), and crayfish (Holdich 
et al. 2009), is ever increasing. Many aquatic fungal patho-
gens are generalists, causing disease in animals spanning 
families, or even orders (Poulin and Mouillot 2003; Scheele 
et al. 2019; Gray et al. 2023). In this case, and in contrast 
to pathogens with a single host species, the composition 
of the host community and the susceptibility of each host 
species can shape many aspects of the epidemiology and 
overall impact on aquatic communities (Woolhouse et al. 

Fig. 4  Box and whisker plots showing the relationship between  log10 
Bd load per swab for infected animals (A), and the proportion of 
post-metamorphic individuals infected with Bd (B) for each instance 
where an animal entered (N = 125) or left (N = 149) the pond by the 

hibernation type (terrestrial vs. aquatic). In (A), each dot represents 
one individual. In (B), dots represent the proportion of individuals 
infected with Bd and error bars represent 95% confidence intervals 
calculated using the Clopper–Pearson method
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2005). However, in many cases, the lack of external symp-
toms on hosts (Gozlan 2012) and limitations on methods and 
support for pathogen detection and monitoring have left us 
without a complete picture of disease dynamics across host 
communities. This, coupled with our limited understand-
ing of the ecologies and life cycles of this diverse group of 
aquatic pathogens, has hampered our ability to understand 
and appreciate the true risk that the emergence and spread 
of such pathogens poses to freshwater communities (Gozlan 
et al. 2014). The amphibian-Bd system, where we now have 
several decades of both experimental and observational stud-
ies on both hosts and pathogen, and a diversity of monitoring 
tools available, stands in stark contrast and presents us with 
an opportunity to provide a case study, answering questions 

about drivers of spatial and temporal dynamics that are not 
yet approachable for many aquatic disease systems.

Seasonal patterns of infection in ephemeral 
and permanent ponds

Observing patterns of variation in infection prevalence and 
load across seasons and habitat types can provide clues as 
to the factors that influence the spread of aquatic pathogens. 
In early spring in our northwest Pennsylvania study system, 
just after amphibians in emerge from hibernation and begin 
migrating to breeding ponds, Bd prevalence was lower in 
ephemeral ponds than in permanent ponds. This difference, 
however, was gone by mid-spring when Bd prevalence 

Fig. 5  Phylogeny of Bd haplotypes (N = 31) inferred from ASTRAL 
and RAxML analyses. The numbers denote ASTRAL local posterior 
probability values. Names in bold represent the samples collected in 
Wood Lab (pond 1) pond and names highlighted in grey were col-
lected in Sanctuary Lake pond (pond 3). The rest of names are previ-

ously genotyped isolates we used to assign Bd lineage designations 
to the samples from this study (Rosenblum et al. 2013; Byrne et al. 
2019). These were from Panama, Brazil, and Asia. Branch coloration 
indicates clade (yellow for GPL1, blue for GPL2, green for “mixed”)
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peaked at ~ 70% then declined in both pond types (Fig. 2A). 
The Bd load also peaked in spring and was lower in sum-
mer, though it rose again in fall in both pond types (Fig. 2C). 
These seasonal patterns, which are similar to those seen in 
other sub-tropical and temperate zone amphibian communi-
ties (Brannelly et al. 2018; Sonn et al. 2019; Wilber et al. 
2022) are perhaps easiest to understand in terms of rela-
tionships between temperature and Bd prevalence and load, 
and our models showed strong support for such relationships 
(Fig. 2B, D).

Body temperature was a significant predictor of Bd infec-
tion in the amphibians inhabiting both the ephemeral and 
permanent ponds in our study area, which is similar to find-
ings of previous studies (Phillott et al. 2013; Sonn et al. 
2019). In both pond types, we found that Bd load decreased 
with amphibian body temperature (Fig. 2D). Bd prevalence, 
on the other hand, was lowest at the extremes of amphib-
ian body temperature and reached a peak in intermediate 
temperature ranges (Fig. 2B), mirroring the thermal perfor-
mance limits for Bd growth in culture (Voyles et al. 2017). 
Bd infections peaked at a lower temperature (~ 11 ºC) in 
permanent than in ephemeral ponds (~ 15 ºC). The explana-
tions for this difference between pond types might include 
(1) differences in the thermal environments available, (2) 
differences in the thermal physiology of distinct Bd lineages 
(as seen in Voyles et al. 2017; Sheets et al. 2021, though 
our data do not suggest structuring of Bd lineages by pond 
type), or (3) differences in the thermal sensitivity of the 
defenses of hosts (as seen in Cohen et al. 2017; Moretti et al. 
2019) that inhabit these two pond types. Previous studies 
have attributed high Bd prevalence in the early spring to 
the fact that Bd survives well at cool temperatures (Voyles 
et al. 2012) whereas the immune defenses of amphibians 
tend to be reduced (Robak et al. 2019; Rollins-Smith 2020). 
Thus, in the case of Bd and possibly other aquatic patho-
gens, a clearer understanding of the thermal physiology of 
both hosts and pathogens seems likely to shed light on the 
mechanisms generating variation in infection across habitat 
types and seasons.

Contributions to a Bd reservoir in permanent ponds

Amphibians exhibit a diverse range of breeding (Duellman 
and Trueb 1986) and overwintering (Neill 1948) strategies 
that can influence their susceptibility to pathogens as well as 
their potential to transport pathogens to and between aquatic 
habitats (Wilber et al. 2017). For example, tadpoles and/or 
post-metamorphic amphibians that overwinter in permanent 
ponds may act as reservoirs (Wilber et al. 2020) maintaining 
pathogen presence in a pond year-round. In contrast, because 
Bd and many other aquatic pathogens are intolerant of des-
iccation, their presence in ephemeral ponds year after year 
likely depends upon a different set of infected hosts (those 

that overwinter terrestrially and enter ephemeral ponds to 
breed each spring), bringing the pathogen anew each year. 
We used our sampling from permanent and ephemeral ponds 
to ask how differences in host life histories, including over-
wintering and breeding habitats, contribute to patterns of 
Bd infection dynamics and spread. In early spring, when 
amphibians in our study area first become active, the preva-
lence of Bd was greater in animals sampled from permanent 
ponds. While we did not sample overwintering amphibians 
themselves, and therefore, could not test this directly, we 
suspected that this pattern reflects the fact that infected over-
wintering animals shed zoospores throughout the winter in 
permanent ponds creating a pathogen reservoir. Our eDNA 
data, however, fail to support the idea that permanent ponds 
represent environmental reservoir for Bd over winter. While 
we detected Bd eDNA in pond water sampled during spring 
and summer in both pond types, during the cooler months 
of the year, we did not detect Bd DNA in water sampled 
from permanent ponds. However, our small sample size for 
this time period, coupled with the knowledge that eDNA 
sampling for Bd has a much higher detection threshold than 
amphibian swab samples (Brannelly et al. 2020), means that 
we cannot rule out the possibility that Bd was present in 
winter and we did not detect it.

Some of the frogs in our study area overwinter as larvae 
in permanent ponds (e.g., Rana catesbeiana, Rana clami-
tans) and thus we suspected that infected overwintering lar-
vae might be an important pathogen reservoir in permanent 
ponds. However, our comparisons of infection prevalence 
and load among life stages suggest that tadpoles play a more 
minor role in pathogen maintenance and transmission in our 
study area. We found larvae to have similar Bd load but 
lower Bd prevalence than post-metamorphic life stages in 
both ephemeral and permanent ponds. In permanent ponds 
the difference in prevalence between life stages was dra-
matic; prevalence in the post-metamorphic animals was 
close to 40% but only 10% of the permanent pond larvae we 
sampled were found to be infected with Bd. Other studies in 
the northeastern United States have shown a wide range of 
Bd prevalences in tadpoles that overwinter aquatically. For 
example, Richards-Hrdlicka et al. (2013) found no evidence 
of infection in R. catesbeiana tadpoles in Julian et al. (2016) 
found a wide range of prevalences in R. clamitans tadpoles 
in Pennsylvania.

Another potential cause for the high prevalence of aquatic 
pathogen infections in permanent ponds in early spring 
could be infected post-metamorphic animals that hibernate 
in those ponds. The data we collected from the two fenced 
ephemeral ponds support this idea for Bd. We found that for 
animals arriving at the fenced ponds in spring, Bd prevalence 
and load were higher in permanent pond hibernators (Rana 
catesbeiana, R. clamitans, and R. pipiens) than terrestrial 
hibernators (all sampled salamander species, R. sylvatica, 
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Pseudacris crucifer, Anaxyrus americanus, and Hyla ver-
sicolor). This suggests that post-metamorphic anurans that 
hibernate in permanent ponds may be important contributors 
to the pool of infectious zoospores not only in permanent 
ponds (where they also breed) but also in ephemeral ponds, 
which they often visit (but do not breed in). A survey like 
ours, which sampled amphibians throughout their active 
season in Maine, USA, also found that infection prevalence 
was lower in species that hibernate in terrestrial habitats 
than that in species that hibernate in aquatic habitats (Long-
core et al. 2007). The permanent pond hibernators entering 
Sanctuary Lake pond had a much lower Bd prevalence than 
those entering Wood Lab pond. There are many variables 
that could contribute to this pattern, but differences in the 
most abundant species (R. pipiens for Sanctuary Lake vs. 
R. clamitans for Wood Lab, see Table S2) and surrounding 
landscape (heavily disturbed by fish farming for Sanctuary 
Lake vs. a matrix of agricultural and forested land for Wood 
Lab) seem likely to be important ones. More work is needed 
to understand whether the patterns we found linking hiber-
nation location to pathogen dynamics are common in other 
aquatic host–pathogen systems as well.

Sources of Bd in ephemeral ponds

Little is known about how aquatic fungal pathogens, many of 
which cannot persist during extended dry periods (Garmyn 
et al. 2012), reach habitats that are terrestrial or only episodi-
cally aquatic, like ephemeral ponds.

In our study system, Bd was frequently detected on ani-
mals sampled from ephemeral ponds and we also detected 
it via eDNA sampling from ephemeral pond water, sug-
gesting that Bd is able to colonize these temporary water 
bodies consistently once they refill. Ambystoma macula-
tum, A. americanus, and P. crucifer, all of which hibernate 
terrestrially, were the first amphibians to enter our fenced 
ephemeral ponds infected with Bd. Approximately 20% (28 
of 137) of the ephemeral pond breeders (8 A. maculatum, 12 
R. sylvatica, 5 P. crucifer, and 2 A. americanus) entering the 
fenced ponds in the first month after these species became 
active were infected with Bd. This suggests that animals 
entering the pond to breed after overwintering in terrestrial 
hibernacula may be bringing Bd to ephemeral ponds each 
spring. Thus, it appears that transmission from permanent to 
ephemeral ponds via infected hosts or environmental sources 
(e.g., rain or fog, Kolby et al. 2015; Prado et al. 2023) is not 
required to sustain Bd in these ephemeral pond communi-
ties over time.

Despite its potential importance for understanding the 
dynamics and spread of Bd, little is known about how 
hibernation affects the course or outcome of Bd infec-
tions in amphibian hosts. The only study we are aware of 

that has addressed this directly is Rumschlag and Boone 
(2018), which found that experimental Bd exposure prior 
to hibernation reduced overwinter survival in the northern 
leopard frog. While it is also possible that they acquired 
infections during migration to the fenced ponds, it appears 
that some of the terrestrially hibernating animals in our 
study may have emerged infected from hibernation. If they 
emerged infected, this means they were able to survive 
with Bd over the long winter, though how infection was 
acquired and how infection loads may have changed over 
the winter remain unknown. It may be possible for species 
hibernating underground to contract Bd infections while 
hibernating, as Bd has been shown to persist in moist 
sand for extended periods (12 weeks, Johnson and Speare 
2003). Alternatively, given that Bd was detected on many 
terrestrial hibernators leaving our ephemeral ponds in fall 
(47 of 134 infected, including 15 A. maculatum, 29 R. syl-
vatica, 1 P. crucifer, and 2 A. americanus), animals may 
have entered hibernacula infected and maintained those 
infections over winter. The predicted Bd prevalence and 
load just after emergence from hibernation were similar 
to those just prior to hibernation for animals sampled in 
our ephemeral ponds. Though we do not have individual-
level data to test this explicitly, this pattern suggests that 
infections are not commonly gained or lost and that loads 
do not increase dramatically during the cold months of 
hibernation in our study area.

While they breed, develop, and hibernate in more 
permanent water, some of the permanent pond associ-
ated amphibians in our study area (e.g., R. catesbeiana, 
R. clamitans, and R. pipiens) were often encountered in 
and around our sampled ephemeral ponds. While they 
were not the first to bring Bd to the ephemeral ponds, we 
found that individuals of species that hibernate in (and in 
all cases also breed in) permanent ponds had higher Bd 
prevalence and load when entering the fenced ephemeral 
ponds than did those that hibernate terrestrially. As early 
as April 5th, we began to encounter R. catesbeiana, R. 
pipiens, and R. clamitans along our drift fences and 60.6% 
(60 of 99) of these permanent pond associated species 
were infected with Bd upon first entry into a fenced pond. 
Whereas, this number was much lower, only 25.4% (66 
of 259), for the terrestrially hibernating animals. Most of 
the permanent pond associated animals found entering the 
fenced ephemeral ponds with Bd infections were R. clami-
tans (50/64 infected). This supports the idea that species 
associated with permanent ponds play an important role 
in the pathogen dynamics of ephemeral ponds in addition 
to permanent ones. It also suggests that permanent ponds, 
and the species associated with them, might have a large 
influence on the distribution of aquatic pathogens across 
the landscape.
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Genetic diversity of Bd in ephemeral ponds

Despite finding a surprising amount of genetic diversity 
in Bd across the two fenced ephemeral ponds, there was 
no appreciable structure to that diversity between ponds or 
among the amphibian species. The two ephemeral ponds are 
separated by ~ 9 km, a distance greater than amphibians in 
this region are thought to disperse (Smith and Green 2005), 
suggesting that movement of infected individuals between 
the two ponds would be quite unlikely. The lack of genetic 
differentiation could be explained by these pond communi-
ties being part of a metapopulation, connected by occasional 
dispersal (Hamer and McDonnell 2008) or by movement of 
Bd by more vagile animals (e.g., birds, reptiles, or humans; 
Burrowes and De la Riva 2017; Prahl et al. 2020) or through 
environmental sources like rain or fog (Kolby et al. 2015; 
Prado et al. 2023). There was a large amount of overlap in 
the Bd genetic variants found on animals entering vs. leaving 
the fenced ponds and also across the spring and summer sea-
sons. The nearly complete lack of genetic structure among 
Bd from different ponds in our study area stands in stark 
contrast to the pattern seen among high-elevation lakes in 
the Sierra Nevada of California (where Bd haplotypes show 
strong genetic structure and a pattern of isolation by distance 
among high elevation lakes) but resembles the pattern of Bd 
genetic diversity seen in western Panama (where Bd shows 
little genetic diversity across geographically distant stream 
systems) (Rothstein et al. 2021).

In both of our fenced ponds, we found a diversity of Bd 
haplotypes belonging to the globally invasive panzootic line-
age (GPL). The GPL comprises two genetic clades: BdGPL-
1, which is primarily found in North America and Europe, 
and BdGPL-2, which is distributed worldwide (James et al. 
2015; O’Hanlon et al. 2018). GPL-1 is often thought of as 
a North American lineage and is thought to be ancestral 
to GPL-2, which is globally distributed and is the lineage 
responsible for amphibian declines in Central America 
(James et al. 2015). While GPL-1 and 2 are both known to 
be present in the United States (Schloegel et al. 2012), in this 
study and in a study of a larger sample of ponds from this 
region (Byrne et al. 2022), we found evidence for a clade 
with less than 0.7 posterior support that appears to be a mix 
of Bd GPL1 and GPL2. This finding could be explained by 
coinfected animals harboring Bd strains belonging to both 
sublineages. The lab experiments have demonstrated the 
potential for such coinfection (Jenkinson et al. 2018). Alter-
natively, it could indicate that recombination has occurred 
between the two sublineages. Hybrids between clades of Bd 
have been reported previously (e.g., in Brazil; Greenspan 
et al. 2018). The ongoing work aimed at clarifying the his-
tory of the host–pathogen relationship in this region, as well 
as mechanisms by which these populations have managed to 
avoid the catastrophic declines that Bd caused in many other 

amphibian communities, may also shed light on the cause 
of the large genetic diversity and ‘mixed’ Bd genotypes we 
detected in this study.

Conclusions

By combining host surveys with molecular pathogen detec-
tion and genotyping, we were able to gain new insights into 
the landscape-scale spatial dynamics and diversity of an 
emerging wildlife pathogen. Some ephemeral pond breed-
ing amphibians emerged from terrestrial hibernation sites 
infected with Bd, suggesting that transmission by animals 
visiting from permanent ponds is not required to bring 
aquatic pathogens like Bd to ephemeral ponds each year. 
However, the amphibians that hibernate in permanent ponds 
and later visit ephemeral ponds tend to have greater patho-
gen loads than those that hibernate terrestrially. Unlike other 
systems where anuran larvae are important reservoirs (e.g., 
Narayan et al. 2014; Hagman and Alford 2015), tadpoles 
seem to be a less important reservoir for Bd than later life 
stages in our study area. We found a large amount of genetic 
variation and little to no genetic structure in the Bd sampled 
from amphibian hosts, suggesting that the pathogen has been 
present for some time and has little difficulty moving across 
the mosaic landscape of rural northwestern Pennsylvania. 
Studies using a similar combination of approaches in other 
systems hold promise for understanding whether the pat-
terns we have documented in our study area hold for other 
aquatic communities and other fungal disease systems more 
generally.
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