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1  |  INTRODUC TION

Amphibian populations have declined dramatically in the past five de-
cades, with an estimated 48% of species rapidly declining and nearly 
10% of amphibian species on the Critically Endangered list (Scheele 
et al.,  2019; Stuart et al.,  2004). Batrachochytrium dendrobatidis 
(Bd), the causative agent of chytridiomycosis (Berger et al.,  1998), 

is associated with many worldwide declines. Eradication of wildlife 
pathogens like Bd would be economically and ecologically infeasi-
ble (Cross et al., 2007), especially given that Bd has non-amphibian 
hosts (Brannelly et al., 2015; McMahon et al., 2013). Therefore, we 
need strategies focused on disease mitigation for protecting extant 
amphibian species.

Wildlife vaccination has proven effective for the manage-
ment of other diseases (Cross et al., 2007; Freuling et al., 2013; 
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Abstract
1.	 Batrachochytrium dendrobatidis (Bd) has been associated with massive amphib-

ian population declines worldwide. Wildlife vaccination campaigns have proven 
effective for mitigating damage from other pathogens, and there is evidence 
that adult frogs can acquire resistance to Bd when exposed to killed Bd zoo-
spores and the metabolites they produced.

2.	 Here, we investigated whether Cuban treefrogs tadpoles Osteopilus septentri-
onalis can gain protection from Bd through exposure to a prophylaxis treatment 
composed of killed zoospores or soluble Bd metabolites. We used a 2 × 2 facto-
rial design, crossing the presence or absence of killed zoospores with the pres-
ence or absence of Bd metabolites. All hosts were subsequently exposed to live 
Bd to evaluate susceptibility.

3.	 Exposure to killed zoospores did not induce a protective response. However, 
tadpoles exposed to Bd metabolites had significantly lower Bd intensity and 
prevalence than tadpoles that were not exposed to metabolites.

4.	 The metabolites Bd produce pose no risk of Bd infection and therefore make an 
epidemiologically safe prophylaxis treatment, protecting tadpoles against Bd. 
This work provides a promising potential for protecting amphibians in the wild 
as a disease management strategy for controlling Bd-associated declines.
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Joseph et al.,  2013; Mencher et al.,  2004; Rocke et al.,  2017; 
Tompkins et al.,  2009), and has been used in human health 
and agricultural initiatives, and to protect endangered species 
(Cross et al.,  2007). For instance, the utilization of the SAG2 
rabies vaccine targeting wild carnivores resulted in the elimi-
nation of rabies from France, Italy, Switzerland and Estonia 
(Mähl et al.,  2014). There is evidence that adult frogs can ac-
quire resistance to Bd when exposed to killed Bd zoospores and 
the metabolites they produced (McMahon et al., 2014). Live Bd 
zoospores release many compounds, which we refer to here as 
Bd metabolites. While we do not know the entire make-up of the 
chemicals produced by Bd, we know that some of these chem-
icals are soluble, may assist in entering host tissue (Symonds 
et al.,  2008) and can inhibit the proliferation of host lympho-
cytes (Rollins-Smith et al., 2015).

Despite extensive study of disease management and immunity 
in adult frogs (Rollins-Smith,  2017; see the reviews by Venesky 
et al., 2014), less work has been conducted on developing disease 
mitigation strategies for larval amphibians. This lack of research 
may stem from the assumption that tadpoles lack a robust immune 
system capable of adaptive immunity. Although juveniles and adult 
frogs are immunocompetent, the T and B cells in tadpoles are less di-
verse and have lower antibody affinity than the adult-produced cells 
(Hsu & Du Pasquier, 1984). It is difficult to predict whether tadpoles 
can acquire resistance to Bd in the same way adults can (McMahon 
et al.,  2014; Sauer et al.,  2020). Tadpoles often reach peak abun-
dances that are several orders of magnitude higher than peak abun-
dances for amphibian adults. If tadpoles can acquire resistance, then 
vaccination campaigns could impact a greater proportion of frog 
populations and consequently have a greater chance of inducing 
protective herd immunity.

In a previous study, adult frogs exposed to both killed zoospores 
and the metabolites they produced had reduced infection intensi-
ties and were five times more likely to survive live infection than 
unexposed frogs (McMahon et al.,  2014). This work is a promis-
ing precursor to a wildlife vaccine for Bd, but critical knowledge 
gaps need to be filled before a safe and effective prophylaxis can 
be implemented in the field (see Grogan et al., 2018). For example, 
tadpoles outnumber adults during certain times of the year and so 
knowing if larval amphibians can acquire resistance to Bd is critical. 
Another gap is that it is unclear whether amphibian exposure to the 
killed zoospores or Bd metabolites confers Bd resistance. Previous 
work revealed that adult Cuban tree frogs acquired Bd resistance 
after exposure to killed zoospores (McMahon et al., 2014). However, 
this strategy could pose a risk of releasing live Bd into the field if the 
Bd culture is not completely killed. Previous work found that atten-
uated or low virulence Bd could protect amphibians against more 
virulent strains (Greener et al.,  2020; Waddle et al.,  2021); how-
ever, not all strain cross-combinations provide protection (Barnett 
et al., 2021). In addition, an ideal prophylactic treatment would not 
release any killed or attenuated Bd into the field. Thus, if Bd me-
tabolites confer protection, they might represent a safer treatment 
than the release of killed zoospores. Importantly, we found that 

exposure to Bd metabolites did not have deleterious impacts on 
tadpole growth or development (McMahon et al., 2019). The objec-
tives of this study were to test whether Cuban treefrog Osteopilus 
septentrionalis tadpoles could acquire resistance to Bd and deter-
mine whether killed zoospores, Bd metabolites or both could con-
fer resistance. Insights from this experiment have the potential to 
move conservation biology closer to the implementation of a Bd 
vaccine in the wild.

2  |  MATERIAL S AND METHODS

2.1  |  Bd culture

Bd strain JEL 419 (isolated in Panamá) was cultured on 1% tryp-
tone agar plates at 18°C for 2 weeks (Bd + plates). Bd + plates were 
flooded with artificial spring water (ASW; L. M. Cohen et al., 1980), 
which suspended the zoospores. The Bd + ASW was homogenized 
across all of the plates (Bd + stock  =  1 × 105 zoospores/ml). To 
verify Bd + stock viability, 1  ml of Bd + stock was plated on 1% 
tryptone plates (n = 3 plates); all plates had verified growth after 
8 days. An ASW control stock (Bd-free stock) was made by flood-
ing Bd-free 1% tryptone plates following the same procedure.

2.2  |  Treatment and ASW control preparation

We conducted a 2 × 2 factorial design crossing the presence and ab-
sence of killed Bd zoospores and Bd metabolites. The live Bd + stock 
was flash-frozen with liquid nitrogen to kill it. The resulting killed 
Bd + stock was inspected using a haemocytometer to verify the Bd 
was dead (see McMahon & Rohr, 2014 for methods). Additionally, 
1 ml of the killed Bd + stock was plated on a 1% tryptone plate (n = 3 
plates) and there was no growth after 8 days.

We filtered the killed Bd + stock through a 1.2-μm filter (GE 
Whatman Laboratory Products) to prepare a Bd metabolite solution. 
We defined the Bd metabolite solution as the Bd-free filtrate that 
passed through the filter; this filtrate may be enriched with com-
ponents of Bd and the chemicals it produced. A visual inspection 
of the Bd enriched filtrate on a haemocytometer was conducted to 
verify that no zoospores remained in this Bd metabolite treatment. 
We then washed the filters with the same amount of ASW that was 
passed through the filter initially to resuspend the killed zoospores. 
This process created a suspension of killed zoospores with the 
same concentration as the original solution but no metabolites. The 
ASW control treatment was created by filtering the Bd-free stock 
through a 1.2-μm filter. We determined there was no difference for 
pH, copper (ppm), iron (ppm), nitrate (ppm), total alkalinity (ppm) or 
carbonate (ppm) between the Bd metabolite solution and the ASW. 
All treatments were maintained in a laboratory grade −20°C freezer 
until the day they were used. Individual treatment vials were de-
frosted each day, brought to experimental room temperature, and 
administered.
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2.3  |  Exposure trial

Bd-naïve Cuban treefrog tadpoles (Gosner stage 25; Gosner, 1960) 
were raised in the laboratory from field-collected eggs (collected in 
Hillsborough County, Tampa FL; the Cuban treefrogs used had no 
prior exposure to Bd and, therefore, gave us a clear view of their 
response to the treatments). The frogs were kept in tanks with ASW 
and fed fish food and organic spinach ad libitum (12:12 hr light: dark 
at 18°C; this temperature was chosen because it has been shown to 
yield ideal Bd growth on this species [Cohen et al., 2017], and this 
is a temperature the host species routinely experiences in the field). 
The tadpoles were considered Bd-naïve as the eggs were collected 
from an area with no known Bd infections despite extensive local 
screening (TA McMahon unpublished data) and a subset of tadpoles 
tested Bd-free at the start of the experiment. At the beginning of the 
experiment, tadpoles (n = 20 per treatment; sample size substantial 
enough to compensate for individual variation) were housed indi-
vidually in 500 ml of ASW and were randomly assigned and exposed 
to one of the four different treatments. Each tadpole was exposed 
to 1 ml of their respective treatment added directly to their tanks 
daily for 2 weeks. One day after the 2-week exposure period, all tad-
pole tanks were dosed with 1 ml of live Bd + stock (strain JEL 419: 
1 × 105 zoospores/ml) and maintained for two more weeks. This time-
frame was long enough for a strong Bd infection to develop but not 
long enough to see severe disease in the host, which should reduce 
the adverse effects the hosts experience. All containers received a 
50% water change weekly. Mortality was tracked daily throughout 
the entire experiment. All of the tadpoles were euthanized, their 
mouthparts were harvested, and the Bd load for each individual was 
quantified with quantitative PCR (qPCR). This work was approved by 
the IACUC at the University of Tampa (IACUC #2018–2).

2.4  |  Quantitative PCR

We followed the qPCR protocol described by Hyatt et al.  (2007). 
Briefly, PrepMan Ultra (Applied Biosystems) was used to extract 
DNA from each mouthpart. The mouthpart tissue was placed in a 
cell disruptor (Disruptor Genie, Scientific Industries) and agitated 
for better extraction efficiency using 0.035 ± 0.05 g of zirconia/silica 
beads for 2.25  min. We screened all samples for inhibition using 
TaqMan Exogenous Internal Positive Control Reagents (Applied 
Biosystems). There was no evidence of inhibition.

2.5  |  Statistical analysis

All statistical analyses were conducted in R statistical software (R: 
Development Core Team, 2020). Prior to analysing the data, we used 
model selection and AICc values to determine that using a zero-inflated 
model was the best fit for our data (see Appendix S1 in Supporting 
Information; Table  S1). We simultaneously tested for differences 
among treatments in Bd prevalence and infection intensity using a 

zero-inflated negative binomial generalized linear model (zi-glm). We 
crossed the factors, exposure killed Bd zoospores (Yes or No) and ex-
posure to Bd metabolites (Yes or No), as predictors for both the ‘zero-
Inflation’ (prevalence) and ‘conditional count’ (intensity) components 
of the zi-glm (package: glmmTMB, function: glmmTMB). We conducted 
planned pairwise comparisons among each treatment group to test for 
differences in prevalence and intensity with corrections for multiple 
comparisons (package: emmeans, functions: emmeans and pairs).

3  |  RESULTS

Tadpoles exposed to treatments containing Bd metabolites were 
less likely to become infected (i.e. lower prevalence) when sub-
sequently exposed to live Bd, relative to treatments that did not 
contain the metabolites (i.e. zero inflation component of zi-glm: 
z = 3.43, p = 0.0006; Figure 1A). Planned comparisons indicated 

F I G U R E  1  The effects of prophylactic treatments (2 × 2 
design: Bd metabolites*killed Bd zoospores) on Batrachochytrium 
dendrobatidis (Bd) infection intensity in Cuban treefrog Osteopilus 
septentrionalis tadpoles. Shown are (A) Bd prevalence (means ± SE) 
and (B) Bd intensity (genome equivalents) 2 weeks after exposure 
to live Bd. The top and bottom of the box represents the 75th and 
25th percentiles, respectively, the line = median, the x = mean, 
the whiskers = the minimum and maximum values not included in 
the outliers, and the circle = the outliers. Letters signify significant 
differences based on estimated marginal means.

(A)

(B)
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that relative to ASW control (no killed zoospores or Bd metabo-
lites), exposure to just metabolites (t = −3.43, p = 0.005; Figure 1A) 
or both zoospores and metabolites (t = −3.39, p = 0.006; Figure 1A) 
reduced Bd prevalence. There was no interaction between killed 
zoospores and metabolites in regard to Bd prevalence (z = −0.30, 
p = 0.762).

Bd infection intensity was significantly lower in tadpoles ex-
posed to Bd metabolites compared to the treatments without 
metabolites (conditional count component of zi-glm: z  =  −5.51, 
p < 0.0001; Figure  1B). There was a significant interaction be-
tween killed zoospores and metabolites (z  =  2.40, p  =  0.016) 
such that tadpoles receiving the metabolite-only treatment had 
significantly lower intensity than those receiving both compo-
nents (Figure 1B). Planned comparisons indicated that exposure to 
metabolites-only reduced infection intensity (t = 5.51, p < 0.0001) 
and this effect was significant when comparing metabolites-only 
vs. killed zoospores-only (t  =  4.04, p  =  0.0007). There were no 
mortalities during this experiment and, therefore, no effect of 
treatment on mortality.

4  |  DISCUSSION

Here, we demonstrated that prophylactic exposure to Bd metabo-
lites can offer protection to tadpoles against Bd infection in terms of 
disease intensity and prevalence. Given that adults can also acquire 
resistance to Bd (McMahon et al., 2014), inducing disease resistance 
across amphibian life stages would greatly increase the chances of 
this prophylactic treatment being developed into a successful wild-
life vaccine, especially if similar results are found in additional am-
phibian species.

We found that the effective component of the prophylactic 
treatment was the Bd metabolites, not the killed zoospores them-
selves. Indeed, there was no difference in Bd intensity between 
the control tadpoles and those exposed to the killed Bd zoospores 
alone, signifying that the killed zoospores do not induce a protec-
tive response for tadpoles. The Bd metabolites treatment, which 
contains no cellular components larger than the 1.2 μm filter or in-
fectious agents, has a lower risk of releasing live Bd than a treat-
ment that uses killed or attenuated Bd. Importantly, exposure to 
this prophylactic metabolite treatment could protect individuals in 
the wild from this devastating fungal pathogen, and currently, there 
are very few prophylaxis or vaccine treatments available for fungal 
pathogens (but see Rocke et al.,  2019). Additionally, this potential 
field treatment could be an incredibly powerful conservation tool if 
herd immunity could be induced in wild populations; though more 
research is needed to determine if this is possible.

Reducing Bd loads in the aquatic tadpole stage is particularly 
advantageous because it would allow managers to dose a water-
body directly, exposing multiple individuals of different life stages 
and species all at once. Protecting the aquatic life stage would en-
able us to protect individuals in species with terrestrial adult stages, 
which would otherwise be difficult to do on a wide scale. Protecting 

terrestrial adults would require catching and exposing individuals, 
which is logistically challenging and time-consuming. While more 
research is needed to determine how long this protective response 
lasts, and the mechanism for it, reducing the Bd loads in tadpoles 
in a population may lead to lower pathogen prevalence and lower 
population-wide mortality, therefore, allowing more individuals to 
reach the breeding stage. Moreover, in addition to increasing indi-
vidual resistance to the pathogen, inducing protection across life 
stages may increase population-scale resistance, further reducing 
the prevalence and intensity of the pathogen itself in the environ-
ment (Miller et al., 2006).

The Bd metabolite prophylaxis is easy to administer, can be pro-
duced by local researchers and conservation groups, and is effective 
without containing infectious agents. We can induce protection in 
Cuban treefrog tadpoles. If we can do the same in other species, 
then we can potentially use this preliminary work to develop a wild-
life vaccination campaign, which could be used as an effective dis-
ease management tool to control Bd-associated declines. Further 
work is needed to identify the chemical compounds within the Bd 
metabolites that confer resistance and determine whether the pro-
tection wanes with time. Additionally, before any potential prophy-
laxis can be used in the field, its non-target effects would need to 
be explored. A wildlife vaccine campaign could be an effective tool 
in protecting at-risk amphibian populations from this highly destruc-
tive pathogen.
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